# Taxonomic significance of leaf morphological variations within some Bauhinia L. species

#### Wafaa K. Taia<sup>1</sup> and Riham A. Mahdy<sup>2</sup>

<sup>1</sup>Alexandria University, Faculty of Science, Botany and Microbiology Department, Alexandria, Egypt. Mail: taiataxonomy86@gmail.com <sup>2</sup>Ornamental Plant and Landscape Gardening Research Department, Horticulture Research Institute, Agriculture Research Center, Giza, Cairo. Mail: rrehamaa@yahoo.com

### **Research Article**

Received: 23-10-2021 Accepted: 30-10-2021 Published: 31-10-2021

Abstract: Leaf characters of 15 Egyptian Bauhinia species and two forms, investigated using both the eye lens and scanning electron microscope. Variations within the leaf shapes are recorded and all obvious morphological characters are subjected to statistical analyses. These analyses were restricted to the characters noticed by the eve lens only. Density, type, and wall ornamentation of the hairs considerably varied between the studied taxa. Most of the species have epicuticular wax

depositions with different shapes on the periclinal walls. Characters of both the periclinal and anticlinal walls, seen from SEM investigations are insignificant, while the hair type, density, and wall ornamentations shows great variations within the taxa. This study supports the division of the *Bauhinia* species into two subgenera with five sections. Identification key and evolutionary line postulated within the studied species according to leaf macro-morphological characters.

Keywords: Bauhinia, Division, Evolution, Leaf, Morphology, Taxonomy.

# **INTRODUCTION**

number of taxonomical treatments in which it has been on molecular analyses suggest the division of the Bauhinia recognized either as a single genus with several subgenera or as species into Bauhinia s.s and other independent genera <sup>15,16,17,18</sup>. several distinct genera. Bauhinia was named after the two Swiss Most of the above-mentioned taxonomic divisions relayed botanist's brothers Jean Bauhin (1541-1613) and Gaspard mainly on minor morphological differences in leaf and fruit Bauhin (1560–1624), suggesting a brotherly relationship in its characters. Larsen & Larsen in <sup>19</sup> concluded, "that Bauhinia in commonly bilobate leaves <sup>1</sup>. Genus *Bauhinia* L. is considered one from the largest genera belonging to family Fabaceae, subfamily Cercidoideae tribe Bauhinieae, subtribe Bauhiniinae Larsen and Larsen in <sup>19</sup> noted that Bauhinia s.l. presents a as given by the Legume Phylogeny Working Group<sup>2</sup>. The classification of the species within this genus has been faced with many controversial opinions <sup>1,3,4,5,6,7</sup>. This genus contains more than 350-400 species worldwide, except the Pacific islands <sup>8</sup>. Species belonging to this genus are cultivated, ornamental woody trees, shrubs, or lianas characterized by the bilobed palmately venated leaves. The division of the Bauhinia species has given by<sup>9</sup>, who identified four subgenera under the genus: Barklya (1 species), Bauhinia (140 species), Elayuna (6 species), and *Phanera* (150 species). The latter subgenus characterize by tendril-bearing species, while the three former taxa comprise woody tree or shrubby species.

In fact, the classification of the species under this genus is complicated, and it has been recognized either as a large genus

The pantropical genus Bauhinia L. has been the subject of a by <sup>1,3,7,9,10,11</sup>, or as 8-9 distinct genera by <sup>12,13,14</sup>. Recent studies the sense of Linnaeus, Bentham, De Candolle, Taubert, and Hutchinson is an evolutionary unit and a very natural genus". reticulate pattern of variation across its pantropical range. While this is undoubtedly true if the genus is considered as all-

> inclusive, recent studies of legume distributions have revealed repeated patterns of generic distribution which appear to be duplicated by at least some of the segregates of Bauhinia. Accordingly, this investigation was carried out to study the leaf macro- beside micro-morphological characters, within the cultivated Bauhinia species cultivated in the Egyptian roads and gardens. Meanwhile, this study traces the main line of evolutions within the studied species.

### MATERIALS AND METHODS

Fifteen species and two forms, commonly cultivated in the Egyptian roads and gardens, were subjected in this study. Herbarium sheets were examined from the mentioned botanical gardens in Cairo, Egypt (table 1). Leaves from, at least 10 branches, were examined carefully by eye lens to observe the

leaf surfaces and texture. Ten leaves were measured by the ruler for their lengths and width (widest part) and L/W calculated. Leaf

<sup>\*</sup> Corresponding author: (Wafaa K. Taia)

Published online at http://gulfpublishers.com/journal/1

Copyright © 2021 The Author(s). Published by Gulf Publishers This work is licensed under the Creative Commons Attribution International

License (CC BY). http://creativecommons.org/licenses/by/4.0/

morphological characters were examined carefully from ten leaves and photographed using an ordinary camera. The terminology used in the description of the morphological characters is that of <sup>20</sup>.

## SEM INVESTIGATION

Parts of the dry leaves were stuck onto the Aluminum stubs using double cello tape. The stubs were coated with 30 nm gold in a polaron JFC-1100E coating unit, then examined and photographed under 15Kev, with JEOL JSM-IT200 SEM in the electron microscopes unit, Faculty of Science, Alexandria University, Egypt. The terminology used according to <sup>21</sup>.

## DATA ANALYSIS

The measured characters are subjected to the SPSS program to calculate the standard error of the mean, standard deviation, and variance. Principal Component Analyses were carried out between the studied leaf characters to estimate the relationship between the characters in each category as well as clustering dendrogram between the studied taxa using PAST program v.3.

Table 1 Studied species, information of the herbarium sheets, source of materials, confirmation of nomenclature and synony

| No | Таха                                | Collectors &<br>date of collection          | Source of<br>materials             | Confirmation of nomenclature                                                                                                                    | Synonyms                                                                                                                        |
|----|-------------------------------------|---------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 1  | B. acuminata L.                     | Riham Mahdy<br>5/7/2020                     | Giza:Mazhar<br>botanical<br>garden | "ILDIS LegumeWeb<br>entry for Bauhinia";<br>USDA, ARS, National<br>Genetic Resources<br>Program; "The Plant<br>List entry<br>for Bauhinia",IPNI | <i>B. linnaei</i> Ali<br><i>B. acuminata</i> Vell.                                                                              |
| 2  | <i>B. blakeana</i><br>Dunn.(hybrid) | <b>Riham Mahdy</b><br>5/12/2020             | Giza:Mazhar<br>botanical<br>garden | The national flowers of<br>Hong Kong. Lau <i>et al.</i><br>(2005).                                                                              | No                                                                                                                              |
| 3  | B. forficata J.H.F.                 | Riham Mahdy<br>13/9/2020                    | Giza:Mazhar<br>botanical<br>garden | "ILDIS LegumeWeb<br>entry for Bauhinia";<br>USDA, ARS, National<br>Genetic Resources<br>Program; "The Plant<br>List entry for Bauhinia"         | B. candicans Benth.<br>B. breviloba Benth.<br>B. forficata subsp. forficata<br>Basionym Pauletia forficata<br>(Link) A. Schmitz |
| 4  | B. galpinii N.E. Br.                | Riham Mahdy<br>and Al-Shaarawy<br>12/7/2020 | Al-Abeed<br>Agriculture<br>Farm    | "ILDIS LegumeWeb<br>entry for Bauhinia";<br>USDA, ARS, National<br>Genetic Resources<br>Program; "The Plant<br>List entry for Bauhinia"         | B.galpinii var. galpinii<br>Perlebia galpinii (N.E.Br.)<br>A.Schmitz                                                            |
| 5  | <i>B.glabra</i> Jack                | <b>Riham Mahdy</b><br>12/3/2020             | Giza:Mazhar<br>botanical<br>garden | Catalogue of life check<br>list, The NY Bot. Gard.                                                                                              | B.heterophylla<br>Kunth <u>Schnella</u><br>glabra (Jacq.) Dugand                                                                |
| 6  | <i>B. grandidieri</i> Baill         | <b>Riham Mahdy</b><br>5/7/2020              | Giza:Mazhar<br>Bot.Gard.           | "ILDIS LegumeWeb<br>entry for Bauhinia";<br>USDA, ARS, National<br>Genetic Resources<br>Program; "The Plant<br>List entry for Bauhinia"         | No                                                                                                                              |
| 7  | <i>B. grevei</i> Drake              | Riham Mahdy<br>5/7/2020                     | Giza:Mazhar<br>botanical<br>garden | "ILDIS LegumeWeb<br>entry for Bauhinia";<br>USDA, ARS, National<br>Genetic Resources<br>Program; "The Plant<br>List entry for Bauhinia"         | No                                                                                                                              |
| 8  | B. hookeri F. Muell.                | Riham Mahdy<br>and Al-Shaarawy<br>12/7/2019 | Al-Abeed<br>Agriculture<br>Farm    | IPNI-The International<br>Plant Names Index.                                                                                                    | Lysiphyllum -1<br>hookeri (F.Muell.)<br>Pedley                                                                                  |

| 9  | B.madagascariensis<br>Desv.    | <b>Riham</b> Mahdy<br>5/7/2020 | Giza:Mazhar<br>botanical | "ILDIS LegumeWeb<br>entry for Bauhinia"; | B.commersonü Scott-Elliot       |
|----|--------------------------------|--------------------------------|--------------------------|------------------------------------------|---------------------------------|
|    |                                |                                | garden                   | USDA, AKS, National                      |                                 |
|    |                                |                                |                          | Genetic Resources                        |                                 |
|    |                                |                                |                          | Program; "The Plant                      |                                 |
|    |                                |                                | <i>a</i> . <i>a</i>      | List entry for Bauhinia"                 |                                 |
| 10 | <i>B.monandra</i> Kurz         | Riham Mahdy                    | Giza: Orman              | "ILDIS LegumeWeb                         | No                              |
|    |                                | 22/11/2020                     | botanical                | entry for Bauhinia'';                    |                                 |
|    |                                |                                | garden                   | USDA, ARS, National                      |                                 |
|    |                                |                                |                          | Genetic Resources                        |                                 |
|    |                                |                                |                          | Program; "The Plant                      |                                 |
|    |                                |                                |                          | List entry for Bauhinia''                |                                 |
| 11 | <u>B. purpurea</u> L.          | Riham Mahdy                    | Giza:Mazhar              | "ILDIS LegumeWeb                         | B.platyphylla Zipp. ex          |
|    |                                | 7/3/2020                       | botanical                | entry for Bauhinia'';                    | Span.                           |
|    |                                |                                | garden                   | USDA, ARS, National                      | B.triandra Roxb.                |
|    |                                |                                |                          | Genetic Resources                        | B.castrata Blanco               |
|    |                                |                                |                          | Program; "The Plant                      |                                 |
|    |                                |                                |                          | List entry for Bauhinia"                 |                                 |
| 12 | B.roxburghiana Voigh           | Riham Mahdy                    | Giza:Mazhar              | IPNI (International                      | B.emarginata G.Don              |
|    |                                | 15/9/2019                      | botanical                | Plant Names Index).                      |                                 |
|    |                                |                                | garden                   | Govaerts (1996) World                    |                                 |
|    |                                |                                |                          | Checklist of Seed Plants.                |                                 |
| 13 | <u>B. tomentosa</u> L.         | Riham Mahdy                    | Giza:Mazhar              | "ILDIS LegumeWeb                         | No                              |
|    |                                | 5/7/2020                       | botanical                | entry for Bauhinia'';                    |                                 |
|    |                                |                                | garden                   | USDA, ARS, National                      |                                 |
|    |                                |                                |                          | Genetic Resources                        |                                 |
|    |                                |                                |                          | Program; "The Plant                      |                                 |
|    |                                |                                |                          | List entry for Bauhinia"                 |                                 |
| 14 | B. vahlii Wight & Arn          | Riham Mahdy                    | Giza:Mazhar              | "ILDIS LegumeWeb                         |                                 |
|    |                                | 8/3/2019                       | botanical                | entry for Bauhinia'';                    | B.racemosa Vahl                 |
|    |                                |                                | garden                   | USDA, ARS, National                      | Phanera vahlii (Wight &         |
|    |                                |                                |                          | Genetic Resources                        | Arn.) Benth.                    |
|    |                                |                                |                          | Program; "The Plant                      |                                 |
|    |                                |                                |                          | List entry for Bauhinia"                 |                                 |
| 15 | <i>R variegata</i> (L.) Benth  | Riham Mahdy                    | Giza:Mazhar              | Plants of the world on                   | Phanera varigata (I)            |
|    | <u>D.ruricguu</u> (E.) Bentin. | 7/5/2020                       | botanical                | line                                     | I nuncru variguta (L.)<br>Bonth |
|    |                                | 1/5/2020                       | garden                   |                                          | Dentn.                          |
| 16 | <i>B.variegata</i> (L.) alba   | Riham Mahdu                    | Doki: near               | "ILDIS LegumeWeb                         | No                              |
|    |                                | 8/2/2020                       | Russian Center           | entry for Bauhinia'';                    |                                 |
|    |                                | 0/3/2020                       |                          | USDA, ARS, National                      |                                 |
|    |                                |                                |                          | Genetic Resources                        |                                 |
|    |                                |                                |                          | Program; "The Plant                      |                                 |
|    |                                | 1                              |                          | List entry for Bauhinia"                 |                                 |

## RESULTS

# 1-MORPHOLOGICAL VARIATIONS ACCORDING TO EYE EXAMINATION

Leaves of fifteen species, with two forms belonging to genus *Bauhinia* are investigated using both eye lenses and SEM. The life form of the studied taxa is mostly trees or shrubs, lianas are found in both *B.glabra* and *B. vahlii*. The stipules of the leaves are usually andante to the stem enclosing the axillary buds, or free as small linear leafy structures, except in *B.forficata* they are small spines at each side of the leaf base. The leaves are petiolate in all the studied taxa, with different lengths (table 2 and Plate 1). The variability within the leaf blades is noticeable within all the studied taxa. The base of the leaf blades is straight or convex and mostly simple, with orbicular or cordate shapes. In *B.glabra, B.grandidieri and B. grevei* the leaf blades are oblong or nearly ovate and bifoliate. The leaf texture is papyraceus, coriaceous, or scariosus except in *B. vahlii* it is spongiousis (table 2 & Plate 1). The veins in the leaf surface appearance are rectinervis, curvinervis or nervosus, with different numbers of main veins, from 1 to 15 (table 2 cont.). The main midrib length differs according to the deepness of the apical notch and the leaf length. The venation of the leaves is palmiformis either eureticulodromous or brochidodromous, except in both *B.grandidieri and B. grevei* the venation is rectinervis, eureticulodromous in the former and uninervouss brochidodromous or trinervous eureticulodromous. The leaf blade apices take variable wide of the V-shapes, it varied from the narrow V-shaped to the very wide V-shaped, except in *B. roxyburghiana* the apices are nearly obtuse (table 2 cont. & Plate 1).

### Table 2 Vegetative morphological characters of the studied species examined by eye lens

Abbreviations: BCord=Broadly cordatus, Bifor= Biforked, Cor=Cordatus Cv= Convex, L/W=Length/Width, Ren=ReniformisSCv=Strong convex, Obl= Oblongus, Orb=Orbicularis, Sim=Simple, Str=Straight.

|                        |                |          |                   |       | Blade |                          |                          |                   |       |                 |  |
|------------------------|----------------|----------|-------------------|-------|-------|--------------------------|--------------------------|-------------------|-------|-----------------|--|
| Char.→<br>Taxa↓        | Life form      | Stipules | Petiole<br>L      | form  | base  | L                        | W                        | L/W               | Shape | texture         |  |
| B.acuminata            | Shrub          | free     | 2.7-4<br>(3.2)    | Sim   | Str   | 7.6-11.7<br>(9.30)       | 7.0-12.0<br>(9.20)       | 1.0-1.1<br>(1.02) | Orb   | Coriaceus       |  |
| B. blakeana            | Tree           | adnate   | 3.3-4.4<br>(3.76) | Sim   | Cv    | 8-13.6<br>(9.66)         | 8.9-14.2<br>(10.84)      | 0.8-1.0<br>(0.89) | Cor   | Scariosus       |  |
| B.forficata            | Tree           | spiny    | 2-3<br>(2.56)     | Sim   | Str   | 6.5-9<br>(8.28)          | 4.8-6.7<br>(5.96)        | 1.3-1.5<br>(1.39) | Cor   | Papyraceus      |  |
| B.galpinii             | Shrub          | adnate   | 0.5-0.8<br>(0.66) | Sim   | Cv    | 2.5-3.6<br>(2.94)        | 3.5-5.2<br>(4.22)        | 0.6-0.8<br>(0.7)  | Cor   | Scariosus       |  |
| B.glabra               | Liana          | adnate   | 1.2-2<br>(1.68)   | Bifol | Cv    | 1.2-3.8<br>(2.54)        | 1.05-1.8<br>(1.42)       | 1.1-2.5<br>(1.75) | Obl.  | Papyraceus      |  |
| B. grandidieri         | Shrub          | free     | 0.6-0.8<br>(0.7)  | Bifol | Str   | 0.8-1.2<br>(1.0)         | 0.4-0.7<br>(0.56)        | 1.6-2.0<br>(1.81) | Obl   | Coriaceus       |  |
| D annai                | <u>Classel</u> | adnate   | 1.1-1.5<br>(1.28) | Bifol | Str   | 2.3-2.6<br>(2.48)        | 1.2-1.5<br>(1.3)         | 1.7-2.2<br>(1.92) | Obl   | Papyraceus      |  |
| D. grevei              | 511100         | adnate   | 0.7-0.9<br>(0.8)  | Sim   | Str   | 3.1-3.4<br>(3.2)         | 1.4-2.0<br>(1.6)         | 1.6-2.3<br>(2.03) | Ovate | Papyraceus      |  |
| B. hookeri             | Tree           | free     | 1.2-2.3<br>(1.74) | Sim   | Str   | 1.8-2.8<br>(2.34)        | 1.4-2.7<br>(2.16)        | 0.9-1.3<br>(1.11) | Orb   | Coriaceus       |  |
| B.madagascariensi<br>s | Shrub          | adnate   | 2.6-4.8<br>(3.86) | Sim   | Str   | 6.2-9.2<br>(7.74)        | 5.8-7.8<br>(6.68)        | 1.1-1.3<br>(1.15) | Orb   | Papyraceus      |  |
| B.monandra             | Shrub          | free     | 2.7-5.2<br>(3.92) | Sim   | Cv    | 6.5-15<br>(9.94)         | 7.2-14-8<br>(10.52)      | 0.91.0<br>(0.93)) | Orb   | Papyraceus      |  |
| B. purpurea            | Tree           | adnate   | 3.8-5.3<br>(4.52) | Sim   | Cv    | 8.5-11<br>(9.54)         | 9.7-12.0<br>(10.66)      | 0.8-1.0<br>(0.9)  | Orb   | Coriaceus       |  |
| B.roxburghiana         | Tree           | adnate   | 5.6-6.8<br>(6.16) | Sim   | Cv    | 10.5-<br>14.8<br>(12.56) | 13.0-<br>18.5<br>(15.58) | 0.8-0.9<br>(0.81) | Cor   | Papyraceus      |  |
| B.tomentosa            | Tree           | free     | 1.5-2<br>(1.64)   | Sim   | Str   | 2.1-2.5<br>(2.2)         | 1.2-3.2<br>(2.62)        | 0.7-1.8<br>(0.95) | Orb   | Scariosus       |  |
| B. vahlii              | Liana          | free     | 3.7-6.2<br>(5.1)  | Sim   | SCv   | 11.0-<br>14.0<br>(12.38) | 14.2-<br>15.0<br>(14.68) | 0.8-1.0<br>(0.84) | Cor   | Spongiousu<br>s |  |
| B.variegata L.         | Tree           | free     | 2.7-4.2<br>(3.52) | Sim   | Cv    | 8.5-12.3<br>(10.16)      | 9.2-13<br>(10.66)        | 0.9-1.0<br>(0.95) | Orb   | Coriaceus       |  |
| B. variegata alba      | Tree           | free     | 2.3-2.9<br>(2.7)  | Sim   | Str   | 8.6-13.6<br>(11.38)      | 10.0-<br>14.4<br>(12.52) | 0.8-1.0<br>(0.9)  | Orb   | Coriaceus       |  |

Cont. Table 2 Vegetative morphological characters of the studied species examined by eye lens Abbreviations: DVsh=Deep V-shaped, NVsh=Narrow V-shaped, Vsh=V-shaped, WVsh=wide V-shaped, Ysh=Y-shaped

| No | Char.→<br>Taxa↓ | Surface     | No of<br>main<br>veins | Midrib<br>Length<br>(cm.) | Leaf<br>L./Midrib<br>L. | veining                          | Apex | Notch<br>depth |
|----|-----------------|-------------|------------------------|---------------------------|-------------------------|----------------------------------|------|----------------|
| 1  | B.acuminata L.  | Rectinervis | 9                      | 3.9-7.1<br>(5.44)         | 0.96-1.10<br>(1.02)     | Palmiformis<br>Eureticulodromous | Vsh  | 3-4.7<br>(4.0) |

| 2  | B. blakeana Dunn           | Curvinervis  | 11    | 4.2-7.2 | 0.83-0.96 | Palmiformis         | WVsh                  | 3.7-6.4                   |
|----|----------------------------|--------------|-------|---------|-----------|---------------------|-----------------------|---------------------------|
|    |                            |              |       | (5.10)  | (0.89)    | Eureticulodromous   |                       | (4.6)                     |
| 2  | P forfigata Link           | Norwoone     | 0     | 3.1-4.0 | 1.3-1.5   | Palmiformis         | Vch                   | 3.4-5                     |
| 3  | <i>B.jorjicata</i> Link    | INCLVOSUS    | 9     | (3.74)  | (1.39)    | Eureticulodromous   | 1 511                 | (4.5)                     |
|    |                            |              | _     | 1.8-2.9 | 0.6-0.8   | Palmiformis         |                       | 0.4-0.7                   |
| 4  | <i>B.galpinii</i> N.E.Br.  | Nervosus     | 5     | (2, 32) | (0.71)    | Fureticuladromous   | WVsh                  | (0.6)                     |
|    |                            |              |       | (2.52)  | (0.71)    | Dolmiformia         |                       | (0.0)                     |
| 5  | B.glabraJacq.              | Curvinervis  | 3     | 0       | 0         |                     | Vsh                   | 0                         |
|    | 0 I                        |              |       |         |           | Brochidodromous     |                       |                           |
| 6  | R arandidiari Boill        | Doctinorvic  | 2 in  | 0       | 0         | Rectinervis,        | DVch                  | 0                         |
| U  | D grunumert Dam.           | Keetinei vis | each  | U       | U         | Eureticulodromous   | Dvsn                  | v                         |
|    |                            |              |       |         | 0         | Uninervous.         |                       |                           |
| 7  |                            | Nervosus     | 1     | 0       | 0         | Brochidodromous     | Acute                 | 0                         |
|    | <i>B. grevei</i> Drake     |              |       | 0.2-0.5 | 6 4-15 5  | Tripervous          |                       | 27-30                     |
|    |                            | Nervosus     | 3     | (0.29)  | (0.22)    | Euroticula drom oug | DVsh                  | (2.7-3.0)                 |
| -  |                            |              |       | (0.38)  | (9.23)    | Eurenculourollious  |                       | (2.8)                     |
| 8  | R hookeri F Muell          | Nervosus     | 9     | 1.2-2.1 | 1.3-1.5   | Palmiformis         | WVsh                  | 0.3-0.6                   |
| Ŭ  | Di noonerr I i indeni      |              | -     | (1.64)  | (1.36)    | Brochidodromous     |                       | (0.4)                     |
| 0  | B.madagascariensis         | Name         | -     | 1.8-3.6 | 2.5-3.44  | Palmiformis         | NIXZah                | 4.1-5.6                   |
| 9  | Desv.                      | Inervosus    | /     | (2.74)  | (2.91)    | Eureticulodromous   | IN V SII              | (5.0)                     |
|    |                            |              |       | 2.5-9.5 | 1.58-2.6  | Palmiformis         |                       | 2.9-5.5                   |
| 10 | B.monandra Kurz            | Nervosus     | 9     | (5.6)   | (1.95)    | Brochidodromous     | Vsh                   | (43)                      |
| -  |                            |              |       |         | (1.75)    | Diocindodi omods    |                       | $(\mathbf{T},\mathbf{J})$ |
| 11 | B. purpurea L.             | Curvinervis  | 11    | 4.5-0.4 | 1.02-1.89 | Paimilormis         | Vsh                   | 3.0-4.0                   |
|    |                            |              |       | (5.56)  | (1.72)    | Eureticulodromous   |                       | (4.0)                     |
| 12 | <b>B</b> roxburghigngVoigt | Nervosus     | 0     | 9-11.5  | 1.13-1.35 | Palmiformis         | Obtuse                | 1.5-3.8                   |
| 14 | D.I Oxburghana Volgt       | I VCI VUSUS  | ,     | (10.18) | (1.23)    | Brochidodromous     | Obtuse                | (2.9)                     |
| 12 | D ( ) , T                  |              | -     | 0.5-0.9 | 2.33-4.2  | Palmiformis         | <b>X</b> 7 <b>I</b> . | 1.2-1.7                   |
| 15 | B.tomentosaL.              | Recunervis   | /     | (0.66)  | (3.51)    | Eureticulodromous   | vsn                   | (1.5)                     |
| 14 | Den al li Wicht 9          | Name         | 13    | 5-7.5   | 1.57-2.7  | Palmiformis         | Val                   | 4-8.5                     |
| 14 | B.a vaniu wight &Arn.      | Nervosus     | or 15 | (6.25)  | (2.03)    | Eureticulodromous   | r sh                  | (6.1)                     |
| 15 | Devenies et a I            | C            | 11    | 6.5-11  | 1.09-1.38 | Palmiformis         | NIX7-1                | 1-2.5                     |
| 15 | B.variegala L.             | Curvinervis  | 11    | (8.4)   | (1.22)    | Eureticulodromous   | INVSN                 | (1.8)                     |
|    |                            |              |       | 6.5-11  | 1.24-1.39 | Palmiformis         |                       | 2.1-3.7                   |
| 16 | B. variegata alba          | Rectinervis  | 13    | (8.66)  | (1.32)    | Eureticulodromous   | WVsh                  | (2.7)                     |

## 2- MORPHOLOGICAL VARIATIONS ACCORDING TO SEM EXAMINATION

The observed features under the SEM are summarized in table 3 and illustrated in plate 2. The leaf surfaces within the studied taxa are mostly hairy, except in *B.hookeri* and *B.roxburghiana* they are glabrous (Photos 15 and 22). The hairs are distributed all over the leaf surfaces, except in *B.galpinii*, *B.glabra*, and *B.grevei* the hairs are restricted in the margins only (Photos 8 & 13). The hairs are of one type in all the studied taxa, except *B. vahlii*, two types of hairs recorded, multicellular uniserriate pointed and globular hairs (Photos 25 & 26). The hairs, when present, are of different densities and types (table 3). The multicellular, uniserriate pointed appeared woolly, while the densely hairy are mostly unicellular pointed or tabular. The multicellular uniserriate glandular hairs present sparsely in *B. galpinii* only in the leaf margins. There are globular unicellular hairs covering the leaf blade of *B.madagascariensis* and present on *B.vahlii* (Photos 16, 17, 25 & 26). The hair basal cells are unicellular except in *B.galpinii*, *B.glabra* they are multicellular. The hair walls are either smooth or furniture by echinae, granules or scales (table 3 & Photos 4,7,12,19,21,24,26 & 30).

The shape of the epidermal cells are nearly isodiametric or elongated except in *B.madagascariensis*, they are triangular (Photo17). The periclinal walls are mostly grooved, straight or sinuate except in *B.forficata*, *B. monandra* and *B. vahlii*, the periclinal walls are superficial and straight. The anticlnal walls are convex, except in those species with superficial periclinal walls, the anticlinal walls are flat.

Secondary ornamentations on the anticlinal walls take different shapes; they are striate in *B. galpinii*, pitted in *B.grandidieri*, echinate in *B.monandra* and either smooth or granulate in the rest of the studied species (table 3). The tertiary sculpture is in the form of epicuticular secretions which present in different densities and shapes or completely absent in *B. galpinii*, *B.grevei*, *B.monandra* and *B.roxyburghiana*. The epicuticular secretions takes the shapes of needle, flakes, globules or rosette star shapes (Photos 10,12,15,17,19,21 & 24).

Table 3 Vegetative morphological characters of the studied species examined by SEM

Abbreviations: Al=All over the surface, AntW=Anticlinal wall, Bc=Basal cells, Cv=Convex, D= Density, DH=Densely hairy, Ec=echinate, El=Elongated, Fc=flakes, Fl=Flat, G=glabrous, Gl=Globular, Gs=grooved sinuate, Gr=Granulate, H=heterogenous, H=Homogeneity, Is=Isogenous, Iso= Isodiametric, M=Margin, Mc=multicellular, MMT= Multicellular multiseriate glandular, MUG=multicellular uniseriate glandular,

MUP=multicellular uniserriate pointed, Ne=Needle, Or=ornamentation, P=position, Per W.=periclinal wall,Pi=pitted, Ro=Rosette, Sc=Scally, SH=Sparsely hairy, SS=straight superficial, St=Straite, Sm=Smooth, StS=straight superficial, T=type, Tr=triangular, Uc=unicellular, UT= unicellular tabular, W=Wall Wo=Woolly.

|     |                              |    | Trichomes |    |            |    |    |               |           |          |    | Epicuticular |         |
|-----|------------------------------|----|-----------|----|------------|----|----|---------------|-----------|----------|----|--------------|---------|
| No  | Char.→                       |    |           |    | 1          |    |    | of            |           | 1        | 1  | sec          | retions |
| 110 | Taxa↓                        | Р  | Н         | D  | Т          | Ba | W  | Epid.<br>cell | Per<br>W. | Ant<br>W | Or | D            | Т       |
| 1   | B.acuminata L.               | Al | Is        | Wo | MUP        | Uc | Sm | Iso           | StG       | Cv       | -  | ++++         | Ne      |
| 2   | B. blakeana Dunn             | Al | Is        | DH | MUP        | Uc | Sc | Iso           | StG       | Cv       |    | ++++         | Ne      |
| 3   | B.forficata Link             | Al | Is        | Wo | MUP        | Uc | Sm | Iso           | SS        | Fl       | Gr | +            | Gl      |
| 4   | B.galpinii N.E.Br.           | Μ  | Is        | SH | MUG        | Mc | Sm | El            | SG        | Cv       | St |              |         |
| 5   | B.glabraJacq.                | Μ  | Is        | SH | MMT        | Mc | Sm | Iso           | StG       | Cv       |    | ++++         | Ro      |
| 6   | B grandidieri Baill.         | Al | Is        | DH | UT         | Uc | Sc | Iso           | Gs        | Cv       | Pi | ++++         | Gl      |
| 7   | <i>B. grevei</i> Drake       | Μ  | Is        | SH | UP         | Uc | Gr | Iso           | StG       | Cv       | Gr |              |         |
|     |                              | Μ  | Is        | SH | UP         | Uc | Gr | Iso           | StG       | Cv       | Gr |              |         |
| 8   | B. hookeri F. Muell.         |    |           | G  |            |    |    | Iso           | SG        | Cv       | Sm | ++           | Ne      |
| 9   | B.madagascariensis Desv.     | Al | Is        | Н  | Gl         | Uc | Sm | Tr            | SG        | Cv       | Sm | ++           | Ne      |
| 10  | B.monandra Kurz              | Al | Is        | DH | UT         | Uc | Ec | El            | SS        | Fl       | Ec |              |         |
| 11  | B. purpurea L.               | Al | Is        | DH | UP         | Uc | Sc | Iso           | Gs        | Cv       | Gr | +            | Gl      |
| 12  | B.roxburghianaVoigt          |    |           | G  |            |    |    | El            | SG        | Cv       | Sm |              |         |
| 13  | B.tomentosaL.                | Al | Is        | DH | UP         | Uc | Ec | Iso           | Gs        | Cv       | Gr | ++++         | Ro      |
| 14  | <i>B. vahlii</i> Wight &Arn. | Al | Н         | Wo | MUP&<br>Gl | Uc | Sm | El            | SS        | Fl       | Sm | ++++         | Fc      |
| 15  | B.variegata L.               | Al | Is        | DH | UP         | Uc | Sm | El            | Gs        | Cv       | Sm | ++           | Gl      |
| 16  | B. variegata alba            | Al | Is        | DH | UP         | Uc | Sm | El            | Gs        | Cv       | Sm | ++           | Gl      |

D.1.1

I-Spiny stipules----- B.forficata

**I-Leafy stipules** 

| II-Bifoliate leaves |            |               |
|---------------------|------------|---------------|
| III Number of main  | midniha in | and leaflat 2 |

| III-Number of main midribs in each leaflet 3B.glabra      |
|-----------------------------------------------------------|
| III-Number of main midribs in each leaflet 2B.grandidieri |
| III-Number of main midribs in each leaflet 1B.grevei I    |

**II-Simple leaves** 

| B.grevei II |             |
|-------------|-------------|
|             | B.grevei II |

III-Number of main midribs in each leaflet 5-----B.galpinii

**III-Number of main midribs in each leaflet 7** 

IV-Leaves small, their lengths 2.1-2.5 cm------B.tomentosus

IV-Leaves big, their lengths 6.2-9.2 cm------B.madagascariensis

III-Number of main midribs 9

IV-Leaves small, their lengths 1.8-2.8 cm------B.hookeri

IV-Leaves big, their lengths more than 6.5 cm

V-Leaf apex obtuse -----B.roxyburghiana V-Leaf apex notched

VI-Leaf venation Eureticulodromous------B.acuminata

VI-Leaf venation Brochidodromous-----B.monandraa

**III-Number of main midribs 11** 

IV-Leaves big, their lengths more than 8.0 cm

V-Leaf apex shallow notched 1.0-2.5 cm------B.variegata

V-Leaf apex deep notched more than 3.5 cm

VI-Leaf venation Eureticulodromous

VII-Leaf blades covered with very dense needle shaped wax depositions-B.Blakeana

VII-Leaf blades covered with sparse globular wax depositions------B.purpurea

III-Number of main midribs more than 11

IV-Leaves big, their lengths more than 8.0 cm

### V-Leaf apex shallow notched 2.1-3.7 cm-----*B.variegata alba* V-Leaf apex shallow notched 4.0-8.5 cm-----*B.vahlii*

### **3-DATA ANALYSIS**

The data analyses were according to the observable results as they give obvious variation between the studied taxa. The fifteen characters listed in tables 4 & 5 are subjected to statistical analyses as resulted in tables 6 & 7 and illustrated in Figs 1 & 2. Correlation analyses of the fifteen characters indicated that the leaf length, width, number of veins, length of the main midrib and apical notch dept are highly correlated as well as both the leaf type and form. In the second category of +ve correlation are the petiole length and the leaf blade base; the leaf length, width and texture with the leaf blade base; venation type and leaf state (bifoliate versus simple); Main midrib length with the apical notch depth. On the other hand, the leaf length and width beside the number of veins and length of the main midrib are –vely correlated the leaf blade form. Also the type of venation and the depth of the apical notch beside the main midrib length are –vely correlated. The third category is the highly –ve correlated characters, which are the leaf blade form with both the number of veins and apical notch depth as well as the venation type with the number of veins.

The clustering dendrogram divided the studied taxa into two main categories at a similarity index of 33.33. The first group, which has two subgroups A & B, includes the species, *B.acuminata, B., B.blackena, B.monandra, B. purpurea*, the two *varigata* forms, *B.vahli* and *B.roxyburghiana*. These two later species are separated from the rest of the group, at similarity index 49.90 in subgroup B, while the rest of the species in subgroup A. The second group has both *B.forficata* and *B.madagascariensis* in subgroup C at similarity matrix 34.62 and *B.galbenii, B.glabra, B.glandidieri*, and the two *B.grevei* at group D. *B.hookeri* and *B.tomentosa* came together in subgroup E at a similarity index of 58.62 (Fig. 1).

| Taxa   | 1 | 2 | 3   | 4 | 5 | 6 | 7    | 8    | 9 | 10 | 11 | 12 | 13   | 14 | 15  |
|--------|---|---|-----|---|---|---|------|------|---|----|----|----|------|----|-----|
| Acum.  | 2 | 2 | 3.2 | 1 | 1 | 1 | 9.3  | 9.2  | 2 | 2  | 1  | 9  | 5.4  | 1  | 4.0 |
| Blak.  | 1 | 1 | 3.8 | 1 | 1 | 2 | 9.7  | 10.8 | 3 | 3  | 2  | 11 | 5.1  | 1  | 4.6 |
| Forf   | 1 | 3 | 2.6 | 1 | 1 | 1 | 8.3  | 6.0  | 1 | 5  | 3  | 9  | 3.7  | 1  | 4.5 |
| Galb   | 2 | 2 | 0.7 | 1 | 1 | 2 | 4.2  | 0.7  | 3 | 3  | 3  | 5  | 2.3  | 1  | 0.6 |
| Glab   | 3 | 2 | 1.9 | 1 | 2 | 2 | 2.5  | 1.4  | 1 | 2  | 2  | 3  | 0    | 2  | 0   |
| Gran   | 2 | 1 | 0.7 | 1 | 2 | 1 | 1.0  | 0.6  | 2 | 4  | 1  | 2  | 0    | 5  | 0   |
| Grev 1 | 2 | 1 | 1.3 | 2 | 2 | 1 | 2.9  | 1.3  | 1 | 6  | 3  | 1  | 0    | 4  | 0   |
| Grev 2 | 2 | 1 | 0.8 | 2 | 1 | 1 | 3.2  | 1.6  | 1 | 4  | 3  | 3  | 0.4  | 3  | 2.8 |
| Hook   | 3 | 2 | 1.7 | 1 | 1 | 1 | 2.3  | 2.2  | 2 | 3  | 3  | 9  | 1.6  | 2  | 0.4 |
| Madg   | 2 | 1 | 3.9 | 1 | 1 | 1 | 7.7  | 6.7  | 1 | 1  | 3  | 7  | 2.7  | 1  | 5.0 |
| Mon    | 2 | 2 | 3.9 | 1 | 1 | 2 | 9.9  | 10.5 | 1 | 2  | 3  | 9  | 5.6  | 2  | 4.3 |
| Purp   | 1 | 1 | 4.5 | 1 | 1 | 2 | 9.5  | 10.7 | 2 | 2  | 2  | 11 | 5.7  | 1  | 4.0 |
| Roxy   | 1 | 1 | 6.2 | 1 | 1 | 2 | 12.6 | 15.6 | 1 | 7  | 3  | 9  | 10.1 | 2  | 2.9 |
| Tome   | 1 | 2 | 1.6 | 1 | 1 | 1 | 2.2  | 2.6  | 2 | 2  | 1  | 7  | 0.7  | 1  | 1.5 |
| Vah    | 3 | 2 | 5.1 | 1 | 1 | 3 | 12.4 | 14.7 | 4 | 5  | 3  | 13 | 6.3  | 1  | 6.1 |
| Var    | 1 | 2 | 3.5 | 1 | 1 | 2 | 10.2 | 10.7 | 2 | 1  | 2  | 11 | 8.4  | 1  | 1.8 |
| V.alba | 1 | 2 | 2.7 | 1 | 1 | 1 | 11.4 | 12.5 | 2 | 3  | 1  | 13 | 8.7  | 1  | 2.7 |

#### Table 4 Characters employed in data and numerical analysis

Table 5 Characters types and states employed in numerical analyses

| No. | Character | Туре                   | States                     |
|-----|-----------|------------------------|----------------------------|
| 1   | Life form | Multistate qualitative | 1-tree , 2-shrub , 3-liana |
|     |           | unordered              |                            |
| 2   | stipules  | Multistate qualitative | 1-adnate , 2-free, 3-spiny |
|     |           | unordered              |                            |

| 3  | Petiole length    | Continuous             |                                                          |
|----|-------------------|------------------------|----------------------------------------------------------|
| 4  | Leaf blade state  | Binary                 | 1-one type , 2- two types                                |
| 5  | Leaf blade form   | Binary                 | 1-simple , 2-bilobed                                     |
| 6  | Leaf blade base   | Multistate qualitative | 1-straight, 2-convex, 3-strong convex                    |
|    |                   | ordered                |                                                          |
| 7  | Leaf blade length | Continuous             |                                                          |
| 8  | Leaf blade width  | Continuous             |                                                          |
| 9  | Leaf blade        | Multistate qualitative | 1-papyraceus, 2- coriaceus, 3- scariosus, 4- spongiousus |
|    | texture           | unordered              |                                                          |
| 10 | Leaf blade apex   | Multistate qualitative | 1-narrow V-shaped , 2-V-shaped , 3- wide V-shaped , 4-   |
|    |                   | ordered                | deep V-shaped, 5-Y-shaped, 6-acute, 7-obtuse             |
| 11 | Leaf blade        | Multistate qualitative | 1- rectinervis, 2- curvinervis, 3-nervosus               |
|    | surface           | unordered              |                                                          |
| 12 | Number of veins   | Continuous             |                                                          |
| 13 | Length of main    | Continuous             |                                                          |
|    | mid rib           |                        |                                                          |
| 14 | Venation          | Multistate qualitative | 1- Palmiformis Eureticulodromous, 2- Palmiformis         |
|    |                   | unordered              | Brochidodromous, 3- Trinervous, Eureticulodromous, 4-    |
|    |                   |                        | Uninervous, Brochidodromous, 5- Rectinervis,             |
|    |                   |                        | Eureticulodromous                                        |
| 15 | Notch deep        | Continuous             |                                                          |
|    |                   |                        |                                                          |



Fig.1 Clustering analysis of the studied taxa according to macro-morphological characters

Table 6 Statistical data of the 15 characters subjected to numerical analyses

|                | 1                 | 2     | 3                        | 4     | 5     | 6     | 7                 | 8          | 9                 | 10    | 11    | 12         | 13         | 14    | 15    |
|----------------|-------------------|-------|--------------------------|-------|-------|-------|-------------------|------------|-------------------|-------|-------|------------|------------|-------|-------|
| Mean           | 1.764             | 1.647 | 2.829                    | 1.117 | 1.176 | 1.529 | 7.017             | 6.929      | 1.823             | 3.235 | 2.294 | 7.764      | 3.923      | 1.764 | 2.658 |
|                | 7                 | 1     | 4                        | 6     | 5     | 4     | 6                 | 4          | 5                 | 3     | 1     | 7          | 5          | 7     | 8     |
| Std. Error of  | 0.182             | 0.147 | 0.394                    | 0.080 | 0.095 | 0.151 | 0.977             | 1.271      | 0.214             | 0.415 | 0.205 | 0.913      | 0.801      | 0.291 | 0.483 |
| Mean           | 5                 | 06    | 7                        | 55    | 31    | 41    | 7                 | 11         | 12                | 95    | 88    | 66         | 54         | 16    | 1     |
| Mode           | 1.00 <sup>a</sup> | 2.00  | <b>0.70</b> <sup>a</sup> | 1.00  | 1.00  | 1.00  | 1.00 <sup>a</sup> | 10.70      | 1.00 <sup>a</sup> | 2.00  | 3.00  | 9.00       | 0.00       | 1.00  | 0.00  |
| Std. Deviation | 0.752             | 0.606 | 1.627                    | 0.332 | 0.392 | 0.624 | 4.031             | 5.240      | 0.882             | 1.714 | 0.848 | 3.767      | 3.304      | 1.200 | 1.991 |
|                | 45                | 34    | 41                       | 11    | 95    | 26    | 17                | 92         | 84                | 99    | 87    | 12         | 83         | 49    | 88    |
| Variance       | 0.566             | 0.368 | 2.648                    | 0.110 | 0.154 | 0.390 | 16.25<br>0        | 27.46<br>7 | 0.779             | 2.941 | 0.721 | 14.19<br>1 | 10.92<br>2 | 1.441 | 3.968 |
| Range          | 2.00              | 2.00  | 5.50                     | 1.00  | 1.00  | 2.00  | 11.60             | 15.00      | 3.00              | 6.00  | 2.00  | 12.00      | 10.10      | 4.00  | 6.10  |
| Minimum        | 1.00              | 1.00  | 0.70                     | 1.00  | 1.00  | 1.00  | 1.00              | 0.60       | 1.00              | 1.00  | 1.00  | 1.00       | 0.00       | 1.00  | 0.00  |
| Maximum        | 3.00              | 3.00  | 6.20                     | 2.00  | 2.00  | 3.00  | 12.60             | 15.60      | 4.00              | 7.00  | 3.00  | 13.00      | 10.10      | 5.00  | 6.10  |
| Sum            | 30.00             | 28.00 | 48.10                    | 19.00 | 20.00 | 26.00 | 119.3<br>0        | 117.8<br>0 | 31.00             | 55.00 | 39.00 | 132.0<br>0 | 66.70      | 30.00 | 45.20 |

Table 7 Similarity index between the 15 Characters

|        | 1          | 2          | 3           | 4               | 5                | 6          | 7           | 8           | 9          | 10    | 11         | 12               | 13              | 14              | 1<br>5 |
|--------|------------|------------|-------------|-----------------|------------------|------------|-------------|-------------|------------|-------|------------|------------------|-----------------|-----------------|--------|
| 1      | 1          |            |             |                 |                  |            |             |             |            |       |            |                  |                 |                 |        |
| 2      | 0.081      | 1          |             |                 |                  |            |             |             |            |       |            |                  |                 |                 |        |
| 3      | -<br>0.249 | -<br>0.103 | 1           |                 |                  |            |             |             |            |       |            |                  |                 |                 |        |
| 4      | 0.118      | -<br>0.402 | -0.412      | 1               |                  |            |             |             |            |       |            |                  |                 |                 |        |
| 5      | 0.361      | -<br>0.247 | -0.448      | 0.31            | 1                |            |             |             |            |       |            |                  |                 |                 |        |
| 6      | 0.149      | 0.029      | 0.568*      | -0.319          | -0.15            | 1          |             |             |            |       |            |                  |                 |                 |        |
| 7      | -<br>0.384 | 0.097      | 0.877*<br>* | -0.37           | -0.578*          | 0.503<br>* | 1           |             |            |       |            |                  |                 |                 |        |
| 8      | -<br>0.363 | 0.005      | 0.918*<br>* | -0.394          | -0.531*          | 0.524<br>* | 0.97**      | 1           |            |       |            |                  |                 |                 |        |
| 9      | 0.122      | 0.11       | 0.113       | -0.351          | -0.265           | 0.52*      | 0.222       | 0.251       | 1          |       |            |                  |                 |                 |        |
| 1<br>0 | -<br>0.003 | -<br>0.156 | 0.098       | 0.387           | 0.213            | 0.052      | 0.067       | 0.09        | -<br>0.053 | 1     |            |                  |                 |                 |        |
| 1<br>1 | 0.311      | -<br>0.029 | 0.174       | 0.313           | -0.165           | 0.278      | 0.082       | -0.003      | -<br>0.177 | 0.379 | 1          |                  |                 |                 |        |
| 1<br>2 | 0.329      | 0.317      | 0.703*<br>* | -<br>0.576<br>* | -0.73**          | 0.402      | 0.825*<br>* | 0.838*<br>* | 0.457      |       | -<br>0.094 | 1                |                 |                 |        |
| 1<br>3 | -<br>0.473 | 0.101      | 0.802*<br>* | -0.424          | -0.566*          | 0.439      | 0.934*<br>* | 0.935*<br>* | 0.199      | 0.061 | -<br>0.038 | 0.815*<br>*      | 1               |                 |        |
| 1<br>4 | 0.281      | -<br>0.465 | -0.473      | 0.544<br>*      | 0.756*<br>*      | 0.324      | -<br>0.579* | -<br>0.505* | -<br>0.336 | 0.423 | 0.011      | -<br>0.745*<br>* | -<br>0.518<br>* | 1               |        |
| 1<br>5 | 0.203      | 0.06       | 0.709*<br>* | -0.238          | -<br>0.637*<br>* | 0.325      | 0.763*<br>* | 0.714*<br>* | 0.209      | 0.045 | 0.189      | 0.663*<br>*      | 0.525<br>*      | -<br>0.558<br>* | 1      |

Move cells= highly +ve correlated characters, Orange cells= +ve correlated, Blue cells= highly -ve correlated, Green cells= -ve correlated characters

## DISCUSSION

Leaf morphology considers one from the most important vegetative parts in plant identifications. Most of the world floras relay on the leaf variations in the identification keys. Not only the macro-morphological characters as seen by nacked eyes but also the aid of the micro-morphological features in the taxonomical decisions <sup>21,22,23</sup>. <sup>24</sup>found that the type and density of stomata in both the abaxial and adaxial surfaces in 12 species and 3 varieties of *Bauhinia* are able to categorize these taxa into four groups. Genus *Bauhinia* Linn. belonging to the tribe Cercideae, subfamily Caesalpinoideae, family Leguminosae Juss. faced with many taxonomical opinions as mentioned before. According to Wunderlin *et al.* <sup>3,25</sup>, species within this genus are classified under four subgenera; the mostly arborescent or shrubby subgenera *Bauhinia, Elayuna,* and *Barklya*, beside the lianas subgenus *Phanera*. In

a way to trace the relationship between the *Bauhinia* species, this investigation carried out. The sixteen Egyptian road trees *Bauhinia* species were subjected for leaf examinations and according to the macro-and micro-morphological characters, a taxonomical identification key was constructed. From the clustering analysis of the fifteen characters, two well-recognized groups were identified (Fig.1). These groups did not separate the lianas, shrubs from the trees as they gather eight species; *B.acuminata, B., B.blackena, B.monandra, B. purpurea*, the two *varigata* forms, *B.vahli* and *B.roxyburghiana*; in the first group. The second group has the other eight species, with the two *B.grevei* forms; *B.forficata* and *B.madgascariensis, B.galbenii, B.glabra, B.glandidieri*, the two *B.grevei*, and *B.hookeri* and *B.tomentosa*. These two groups are based according to the similarities in leaf macro-morphological characters. Each of these two groups is subdivided into two or three categories. These divisions favored the recognition of the *Bauhinia* species as a large genus, as proposed by <sup>1,3,7,10,11</sup> with two subgenera and five sections.

The most significant +ve correlated leaf characters are the petiole length, leaf blade length, width, shape, base, state, and texture as well as the depth of the apical notch, number of palmate nerves, length of the main midrib, and type of venation. These characters are simply recognized by eye-lens investigation and were evaluated by <sup>26</sup>. These characters can give postulated line of evolution within the studied species. Larsen & Larsen in <sup>19</sup>concluded "that *Bauhinia* in the sense of Linnaeus, Bentham, De Candolle, Taubert and Hutchinson is an evolutionary unit and a very natural genus". Larsen and Larsen <sup>19</sup>noted that Bauhinia *s.l.* presents a reticulate pattern of variation across its pantropical range. <sup>4</sup>mentioned that genus *Bauhinia* is paraphyletic with the monospecific genus *Brenierea* clustered within it. This genus, usually described as sister to *Bauhinia s.l.*, forms a clade with *Bauhinia s.s.* and other genera. But tracing the evolutionary line within the *Bauhinia s.l.* species did not mentioned. From the obvious leaf macromorphological characters, we can postulate that the simple leaf blades with shallow apical notch or rounded apex, with many palmate nerves, are the primitive species, while the deepest apical notch or bifoliate leaves with few nerves can be considered as more advanced. The line of evolution of the studied taxa according to macro-morphological characters is postulated in Fig.2.

In spite of the importance of the micro-morphological characters in taxonomy, in this study gave limited role in the grouping of the genus. The most important micro-morphological characters are the hair type, wall and epicuticular depositions. The presence of globular unicellular hairs in both *B. madagascariensis* and *B.vahlii* was recorded by <sup>27</sup> and called it cavicated secretory hairs.

## Fig. 2 Line of evolution of the studied taxa according to macro-morphological characters

1-B.roxyburghiana ■ -B.variegata ■ 3.hookeri 4- ■ vahlii 5-1 ■ alpinii 6-B. ■ keana 7-B.acuminata 8-B.monant ■ 9-B.forficatt ■ 10-B.glabra 1 ■ B.tomentosa ■ 2-B.madaga ■ riensis 13-B.purpurea 14-B.grandie ■ 15-B.grevei Start fro ■ 1 primitive end ■ 3 with 15 the mo ■ advanced).

## CONCLUSION

This study supports the previous work of considering genus *Bauhinia* a large genus with the division of its species under two subgenera and five sections. Species within the genus show an evolutionary line as the simple leaves with rounded apices, in *B. roxyburghiana*, are considered the most primitive ones. The notched apices with different depths are steps in the evolution toward the bifoliate leaves in *B.grevei*, which is considered the most advanced species within the studied taxa. This work needs further molecular and phylogenetic works to assess the relationship within the taxa.

# REFERENCES

- 1. Lewis G.P. and F.Forest (2005). Tribe Cercideae. Legumes of the world. Edited by Edited by: Lewis G, Schrire B, Mackinder B, Lock M., Kew: The Royal Botanic Gardens. 57-68.
- 2. The Legume Phylogeny Working Group (LPWG) (2017). "A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny". *Taxon.*, 66 (1): 44–77.
- Wunderlin, R.P., K.Larsen and S.S.Larsen. (1987). Reorganization of the Cercideae (Fabaceae: Caesalpinioideae). *Biol. Skr.*, 28: 1-40.
- 4. Sinou C, F. Forest, G.P. Lewis and A. Bruneau. (2009). The genus Bauhinias. I. (Leguminosae): aphylogeny based on the plastidtrnL–trnF region. *Botany*, 87(10):947-960. DOI: 10.1139/B09-065.
- Wunderlin, R. P.(1983). Revision of the arborescent Bauhinias (Fabaceae: Caesalpinioideae: Cercideae) native to Middle America. *Ann. Miss. Bot. Gard.*, 70: 95-127.

- 6. Wunderlin R.P.(2006). Revision of Bauhinia subgenus Bauhinia section Amaria (Cercideae, Caesalpinioideae, Fabaceae). *Sida.*, 22(1): 97-122.
- 7. Wunderlin R.P. (2009). Revision of Bauhinia subgenus Bauhinia section Pauletia (C ercideae, Caesalpinioideae, Fabaceae). J.Bot.Res.Inst. Texas.,3(2): 629-637.
- Juarez P., R. Flores and M.A. Blanco. (2018).Bauhinia proboscidea (Fabaceae: Cercidoideae), a new species from Costa Rica and Panama, with notes on B. beguinotii, B. gorgonae and B. pansamalana. Phytotaxa.,361 (1): 025–040. DOI: <u>https://doi.org/10.11646/phytotaxa.361.1.2</u>.
- 9. <u>Duarte-Almeida</u> J.M., G. Negri and A. <u>Salatino</u>. (2004). Volatile oils in leaves of Bauhinia (Fabaceae Caesalpinioideae). <u>Biochemical Systematics and Ecology</u>, <u>32 (8)</u> : 747-753.
- 10. Zhang D.X. (1995). A cladistic analysis of Bauhinia L. (Leguminosae). Chin J Bot., 7: 52-64.
- 11. Wunderlin R.P.(2010). Reorganization of the Cercideae (Fabaceae: Caesalpinioideae). Phytoneuron, 48: 1-5.
- 12. Chen T.C. (1988). Bauhinia Linn. Flora Reipublicae Popularis Sinicae, Tomus 39. Edited by: Wu TL, Chen PY, Wei CF, Chen TC., Beijing: Science Press.: 145-203.
- Hao G., D.X. Zhang, M.Y. Zhang, L.X. Guo and S.J. Li. (2003). Phylogenetics of Bauhinia subgenus Phanera (Leguminosae: Caesalpinioideae) based on ITS sequences of nuclear ribosomal DNA. Bot Bull Acad Sin.,44: 223-228.